Fit Vector Autoregressive (VAR) Model using dynr on Each of the Data Matrix in a List
Source:R/fitAutoReg-fit-ml-var-dynr.R
FitMLVARDynr.Rd
This function estimates the parameters of a VAR model
using the dynr
package
for each of the data matrix in a list.
Usage
FitMLVARDynr(
data,
p,
ncores = 1,
conf_level = 0.95,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE
)
Arguments
- data
List. Each element is a numeric matrix of time series data with dimensions
t
byk
, wheret
is the number of observations andk
is the number of variables.- p
Positive integer. Number of lags. Only supports
p = 1
andp = 2
.- ncores
Positive integer. Number of cores to use. Not supported on Windows.
- conf_level
a cumulative proportion indicating the level of desired confidence intervals for the final parameter estimates (default is .95)
- optimization_flag
a flag (TRUE/FALSE) indicating whether optimization is to be done.
- hessian_flag
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.
- verbose
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed
- weight_flag
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual
- debug_flag
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes
- perturb_flag
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting.
See also
Other Fitting Autoregressive Model Functions:
FitMLVARMplus()
,
FitVARDynr()
,
FitVARLassoSearch()
,
FitVARLasso()
,
FitVARMplus()
,
FitVAROLS()
,
LambdaSeq()
,
ModelVARP1Dynr()
,
ModelVARP2Dynr()
,
OrigScale()
,
PBootVARExoLasso()
,
PBootVARExoOLS()
,
PBootVARLasso()
,
PBootVAROLS()
,
RBootVARExoLasso()
,
RBootVARExoOLS()
,
RBootVARLasso()
,
RBootVAROLS()
,
SearchVARLasso()
,
StdMat()