Skip to contents

Residual Bootstrap for the Vector Autoregressive Model with Exogenous Variables Using Ordinary Least Squares

Usage

RBootVARExoOLS(data, exo_mat, p, B)

Arguments

data

Numeric matrix. The time series data with dimensions t by k, where t is the number of observations and k is the number of variables.

exo_mat

Numeric matrix. Matrix of exogenous variables with dimensions t by m.

p

Integer. The order of the VAR model (number of lags).

B

Integer. Number of bootstrap samples to generate.

Value

List with the following elements:

  • est: Numeric matrix. Original OLS estimate of the coefficient matrix.

  • boot: Numeric matrix. Matrix of vectorized bootstrap estimates of the coefficient matrix.

  • X: Numeric matrix. Original X

  • Y: List of numeric matrices. Bootstrapped Y

Author

Ivan Jacob Agaloos Pesigan

Examples

data <- dat_p2_exo$data
exo_mat <- dat_p2_exo$exo_mat
rb <- RBootVARExoOLS(data = data, exo_mat = exo_mat, p = 2, B = 5)
str(rb)
#> List of 4
#>  $ est : num [1:3, 1:10] 1.1645 0.6747 1.1333 0.358 0.0194 ...
#>  $ boot: num [1:5, 1:30] 1.332 1.029 1.344 0.856 1.414 ...
#>  $ X   : num [1:998, 1:10] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Y   :List of 5
#>   ..$ : num [1:998, 1:3] 1.776 1.491 1.832 -0.341 1.055 ...
#>   ..$ : num [1:998, 1:3] 2.942 2.634 3.101 -0.228 0.443 ...
#>   ..$ : num [1:998, 1:3] 0.521 0.71 1.355 0.522 0.683 ...
#>   ..$ : num [1:998, 1:3] 1.41 1.99 2.45 1.29 2.34 ...
#>   ..$ : num [1:998, 1:3] 1.54 3.78 0.98 0.56 2.01 ...