Residual Bootstrap for the Vector Autoregressive Model with Exogenous Variables Using Ordinary Least Squares
Source:R/RcppExports.R
RBootVARExoOLS.Rd
Residual Bootstrap for the Vector Autoregressive Model with Exogenous Variables Using Ordinary Least Squares
Arguments
- data
Numeric matrix. The time series data with dimensions
t
byk
, wheret
is the number of observations andk
is the number of variables.- exo_mat
Numeric matrix. Matrix of exogenous variables with dimensions
t
bym
.- p
Integer. The order of the VAR model (number of lags).
- B
Integer. Number of bootstrap samples to generate.
Value
List with the following elements:
est: Numeric matrix. Original OLS estimate of the coefficient matrix.
boot: Numeric matrix. Matrix of vectorized bootstrap estimates of the coefficient matrix.
X: Numeric matrix. Original
X
Y: List of numeric matrices. Bootstrapped
Y
See also
Other Fitting Autoregressive Model Functions:
FitMLVARDynr()
,
FitMLVARMplus()
,
FitVARDynr()
,
FitVARLassoSearch()
,
FitVARLasso()
,
FitVARMplus()
,
FitVAROLS()
,
LambdaSeq()
,
ModelVARP1Dynr()
,
ModelVARP2Dynr()
,
OrigScale()
,
PBootVARExoLasso()
,
PBootVARExoOLS()
,
PBootVARLasso()
,
PBootVAROLS()
,
RBootVARExoLasso()
,
RBootVARLasso()
,
RBootVAROLS()
,
SearchVARLasso()
,
StdMat()
Examples
data <- dat_p2_exo$data
exo_mat <- dat_p2_exo$exo_mat
rb <- RBootVARExoOLS(data = data, exo_mat = exo_mat, p = 2, B = 5)
str(rb)
#> List of 4
#> $ est : num [1:3, 1:10] 1.1645 0.6747 1.1333 0.358 0.0194 ...
#> $ boot: num [1:5, 1:30] 1.332 1.029 1.344 0.856 1.414 ...
#> $ X : num [1:998, 1:10] 1 1 1 1 1 1 1 1 1 1 ...
#> $ Y :List of 5
#> ..$ : num [1:998, 1:3] 1.776 1.491 1.832 -0.341 1.055 ...
#> ..$ : num [1:998, 1:3] 2.942 2.634 3.101 -0.228 0.443 ...
#> ..$ : num [1:998, 1:3] 0.521 0.71 1.355 0.522 0.683 ...
#> ..$ : num [1:998, 1:3] 1.41 1.99 2.45 1.29 2.34 ...
#> ..$ : num [1:998, 1:3] 1.54 3.78 0.98 0.56 2.01 ...