Fit Vector Autoregressive (VAR) Model Parameters using Lasso Regularization with Lambda Search
Source:R/RcppExports.R
FitVARLassoSearch.Rd
Fit Vector Autoregressive (VAR) Model Parameters using Lasso Regularization with Lambda Search
Arguments
- YStd
Numeric matrix. Matrix of standardized dependent variables (Y).
- XStd
Numeric matrix. Matrix of standardized predictors (X).
XStd
should not include a vector of ones in column one.- lambdas
Numeric vector. Lasso hyperparameter. The regularization strength controlling the sparsity.
- crit
Character string. Information criteria to use. Valid values include
"aic"
,"bic"
, and"ebic"
.- max_iter
Integer. The maximum number of iterations for the coordinate descent algorithm (e.g.,
max_iter = 10000
).- tol
Numeric. Convergence tolerance. The algorithm stops when the change in coefficients between iterations is below this tolerance (e.g.,
tol = 1e-5
).
See also
Other Fitting Autoregressive Model Functions:
FitMLVARDynr()
,
FitMLVARMplus()
,
FitVARDynr()
,
FitVARLasso()
,
FitVARMplus()
,
FitVAROLS()
,
LambdaSeq()
,
ModelVARP1Dynr()
,
ModelVARP2Dynr()
,
OrigScale()
,
PBootVARExoLasso()
,
PBootVARExoOLS()
,
PBootVARLasso()
,
PBootVAROLS()
,
RBootVARExoLasso()
,
RBootVARExoOLS()
,
RBootVARLasso()
,
RBootVAROLS()
,
SearchVARLasso()
,
StdMat()
Examples
YStd <- StdMat(dat_p2_yx$Y)
XStd <- StdMat(dat_p2_yx$X[, -1]) # remove the constant column
lambdas <- LambdaSeq(
YStd = YStd,
XStd = XStd,
n_lambdas = 100
)
FitVARLassoSearch(
YStd = YStd,
XStd = XStd,
lambdas = lambdas,
crit = "ebic",
max_iter = 1000,
tol = 1e-5
)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.3429428 0.000000 0.000000 0.08487819 0.0000000 0.0000000
#> [2,] 0.0000000 0.457026 0.000000 0.00000000 0.2120426 0.0000000
#> [3,] 0.0000000 0.000000 0.588127 0.00000000 0.0000000 0.2737749