Parametric Bootstrap for the Vector Autoregressive Model Using Ordinary Least Squares
Source:R/RcppExports.R
PBootVAROLS.Rd
Parametric Bootstrap for the Vector Autoregressive Model Using Ordinary Least Squares
Arguments
- data
Numeric matrix. The time series data with dimensions
t
byk
, wheret
is the number of observations andk
is the number of variables.- p
Integer. The order of the VAR model (number of lags).
- B
Integer. Number of bootstrap samples to generate.
- burn_in
Integer. Number of burn-in observations to exclude before returning the results in the simulation step.
Value
List with the following elements:
est: Numeric matrix. Original OLS estimate of the coefficient matrix.
boot: Numeric matrix. Matrix of vectorized bootstrap estimates of the coefficient matrix.
See also
Other Fitting Autoregressive Model Functions:
FitMLVARDynr()
,
FitMLVARMplus()
,
FitVARDynr()
,
FitVARLassoSearch()
,
FitVARLasso()
,
FitVARMplus()
,
FitVAROLS()
,
LambdaSeq()
,
ModelVARP1Dynr()
,
ModelVARP2Dynr()
,
OrigScale()
,
PBootVARExoLasso()
,
PBootVARExoOLS()
,
PBootVARLasso()
,
RBootVARExoLasso()
,
RBootVARExoOLS()
,
RBootVARLasso()
,
RBootVAROLS()
,
SearchVARLasso()
,
StdMat()
Examples
pb <- PBootVAROLS(data = dat_p2, p = 2, B = 5, burn_in = 20)
str(pb)
#> List of 2
#> $ est : num [1:3, 1:7] 0.79 1.0002 1.0667 0.3684 0.0133 ...
#> $ boot: num [1:5, 1:21] 0.809 0.521 0.692 0.645 0.855 ...