Skip to contents

Parametric Bootstrap for the Vector Autoregressive Model with Exogenous Variables Using Ordinary Least Squares

Usage

PBootVARExoOLS(data, exo_mat, p, B, burn_in)

Arguments

data

Numeric matrix. The time series data with dimensions t by k, where t is the number of observations and k is the number of variables.

exo_mat

Numeric matrix. Matrix of exogenous variables with dimensions t + burn_in by m. If the number of rows is equal to t, set burn_in = 0.

p

Integer. The order of the VAR model (number of lags).

B

Integer. Number of bootstrap samples to generate.

burn_in

Integer. Number of burn-in observations to exclude before returning the results in the simulation step.

Value

List with the following elements:

  • est: Numeric matrix. Original OLS estimate of the coefficient matrix.

  • boot: Numeric matrix. Matrix of vectorized bootstrap estimates of the coefficient matrix.

Author

Ivan Jacob Agaloos Pesigan

Examples

data <- dat_p2_exo$data
exo_mat <- dat_p2_exo$exo_mat
pb <- PBootVARExoOLS(
  data = data,
  exo_mat = exo_mat,
  p = 2,
  B = 5,
  burn_in = 0
)
str(pb)
#> List of 2
#>  $ est : num [1:3, 1:10] 1.1645 0.6747 1.1333 0.358 0.0194 ...
#>  $ boot: num [1:5, 1:30] 1.28 0.86 1.3 1.39 1.14 ...