Skip to contents

This function estimates the parameters of a VAR model using the dynr package.

Usage

FitVARDynr(
  model,
  conf_level = 0.95,
  optimization_flag = TRUE,
  hessian_flag = FALSE,
  verbose = FALSE,
  weight_flag = FALSE,
  debug_flag = FALSE,
  perturb_flag = FALSE
)

Arguments

model

Ouput of ModelVARP1Dynr() or ModelVARP2Dynr().

conf_level

a cumulative proportion indicating the level of desired confidence intervals for the final parameter estimates (default is .95)

optimization_flag

a flag (TRUE/FALSE) indicating whether optimization is to be done.

hessian_flag

a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.

verbose

a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed

weight_flag

a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual

debug_flag

a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes

perturb_flag

a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting.

Value

Object of class dynrCook.

Author

Ivan Jacob Agaloos Pesigan

Examples

if (FALSE) {
FitVARDynr(model = ModelVARP1Dynr(data = dat_p1))
FitVARDynr(model = ModelVARP2Dynr(data = dat_p2))
}