Skip to contents
-
SimVAR()
- Simulate Data from a Vector Autoregressive (VAR) Model
-
SimVARExo()
- Simulate Data from a Vector Autoregressive (VAR) Model with Exogenous
Variables
-
FitMLVARDynr()
- Fit Vector Autoregressive (VAR) Model using dynr
on Each of the Data Matrix in a List
-
FitMLVARMplus()
- Fit Multilevel Vector Autoregressive Model using Mplus
-
FitVARDynr()
- Fit Vector Autoregressive Model using dynr
-
FitVARLasso()
- Fit Vector Autoregressive (VAR) Model Parameters
using Lasso Regularization
-
FitVARLassoSearch()
- Fit Vector Autoregressive (VAR) Model Parameters
using Lasso Regularization with Lambda Search
-
FitVARMplus()
- Fit Vector Autoregressive Model using Mplus
-
FitVAROLS()
- Fit Vector Autoregressive (VAR) Model Parameters
using Ordinary Least Squares (OLS)
-
LambdaSeq()
- Function to generate the sequence of lambdas
-
ModelVARP1Dynr()
- Specify Vector Autoregressive (VAR(p = 1)) Model using dynr
-
ModelVARP2Dynr()
- Specify Vector Autoregressive (VAR(p = 2)) Model using dynr
-
SearchVARLasso()
- Compute AIC, BIC, and EBIC for Lasso Regularization
-
SelectVARLasso()
- Select the Lasso Estimates from the Grid Search
Parametric Bootstrap Functions
-
BootCI()
- Bootstrap Percentile Confidence Intervals
-
BootSE()
- Bootstrap Standard Errors
-
PBootVARExoLasso()
- Parametric Bootstrap for the Vector Autoregressive Model
with Exogenous Variables
Using Lasso Regularization
-
PBootVARExoOLS()
- Parametric Bootstrap for the Vector Autoregressive Model
with Exogenous Variables
Using Ordinary Least Squares
-
PBootVARLasso()
- Parametric Bootstrap for the Vector Autoregressive Model
Using Lasso Regularization
-
PBootVAROLS()
- Parametric Bootstrap for the Vector Autoregressive Model
Using Ordinary Least Squares
Residual Bootstrap Functions
-
BootCI()
- Bootstrap Percentile Confidence Intervals
-
BootSE()
- Bootstrap Standard Errors
-
RBootVARExoLasso()
- Residual Bootstrap for the Vector Autoregressive Model
with Exogenous Variables
Using Lasso Regularization
-
RBootVARExoOLS()
- Residual Bootstrap for the Vector Autoregressive Model
with Exogenous Variables
Using Ordinary Least Squares
-
RBootVARLasso()
- Residual Bootstrap for the Vector Autoregressive Model
Using Lasso Regularization
-
RBootVAROLS()
- Residual Bootstrap for the Vector Autoregressive Model
Using Ordinary Least Squares
-
OrigScale()
- Return Standardized Estimates to the Original Scale
-
StdMat()
- Standardize Matrix
-
YX()
- Create Y and X Matrices
-
YXExo()
- Create Y and X Matrices with Exogenous Variables
-
SimVAR()
- Simulate Data from a Vector Autoregressive (VAR) Model
-
SimVARExo()
- Simulate Data from a Vector Autoregressive (VAR) Model with Exogenous
Variables
-
dat_ml_p1
- Data from the Multilevel Vector Autoregressive Model (p = 1)
-
dat_ml_p2
- Data from the Multilevel Vector Autoregressive Model (p = 2)
-
dat_p1
- Data from the Vector Autoregressive Model (p = 1)
-
dat_p1_yx
- Data from the Vector Autoregressive Model (Y) and Lagged Predictors (X)
(p = 1)
-
dat_p2
- Data from the Vector Autoregressive Model (p = 2)
-
dat_p2_exo
- Data from the Vector Autoregressive Model with Exogenous Variables
(p = 2)
-
dat_p2_exo_yx
- Data from the Vector Autoregressive Model (Y) and Lagged Predictors
and Exogenous Variables (X) (p = 2)
-
dat_p2_yx
- Data from the Vector Autoregressive Model (Y) and Lagged Predictors (X)
(p = 2)
-
SimVAR()
- Simulate Data from a Vector Autoregressive (VAR) Model
-
SimVARExo()
- Simulate Data from a Vector Autoregressive (VAR) Model with Exogenous
Variables
-
YX()
- Create Y and X Matrices
-
YXExo()
- Create Y and X Matrices with Exogenous Variables
-
BootCI()
- Bootstrap Percentile Confidence Intervals
-
BootSE()
- Bootstrap Standard Errors
-
FitMLVARDynr()
- Fit Vector Autoregressive (VAR) Model using dynr
on Each of the Data Matrix in a List
-
FitMLVARMplus()
- Fit Multilevel Vector Autoregressive Model using Mplus
-
FitVARDynr()
- Fit Vector Autoregressive Model using dynr
-
FitVARLasso()
- Fit Vector Autoregressive (VAR) Model Parameters
using Lasso Regularization
-
FitVARLassoSearch()
- Fit Vector Autoregressive (VAR) Model Parameters
using Lasso Regularization with Lambda Search
-
FitVARMplus()
- Fit Vector Autoregressive Model using Mplus
-
FitVAROLS()
- Fit Vector Autoregressive (VAR) Model Parameters
using Ordinary Least Squares (OLS)
-
LambdaSeq()
- Function to generate the sequence of lambdas
-
ModelVARP1Dynr()
- Specify Vector Autoregressive (VAR(p = 1)) Model using dynr
-
ModelVARP2Dynr()
- Specify Vector Autoregressive (VAR(p = 2)) Model using dynr
-
OrigScale()
- Return Standardized Estimates to the Original Scale
-
PBootVARExoLasso()
- Parametric Bootstrap for the Vector Autoregressive Model
with Exogenous Variables
Using Lasso Regularization
-
PBootVARExoOLS()
- Parametric Bootstrap for the Vector Autoregressive Model
with Exogenous Variables
Using Ordinary Least Squares
-
PBootVARLasso()
- Parametric Bootstrap for the Vector Autoregressive Model
Using Lasso Regularization
-
PBootVAROLS()
- Parametric Bootstrap for the Vector Autoregressive Model
Using Ordinary Least Squares
-
RBootVARExoLasso()
- Residual Bootstrap for the Vector Autoregressive Model
with Exogenous Variables
Using Lasso Regularization
-
RBootVARExoOLS()
- Residual Bootstrap for the Vector Autoregressive Model
with Exogenous Variables
Using Ordinary Least Squares
-
RBootVARLasso()
- Residual Bootstrap for the Vector Autoregressive Model
Using Lasso Regularization
-
RBootVAROLS()
- Residual Bootstrap for the Vector Autoregressive Model
Using Ordinary Least Squares
-
SearchVARLasso()
- Compute AIC, BIC, and EBIC for Lasso Regularization
-
SelectVARLasso()
- Select the Lasso Estimates from the Grid Search
-
StdMat()
- Standardize Matrix
-
dat_ml_p1
- Data from the Multilevel Vector Autoregressive Model (p = 1)
-
dat_ml_p2
- Data from the Multilevel Vector Autoregressive Model (p = 2)
-
dat_p1
- Data from the Vector Autoregressive Model (p = 1)
-
dat_p1_yx
- Data from the Vector Autoregressive Model (Y) and Lagged Predictors (X)
(p = 1)
-
dat_p2
- Data from the Vector Autoregressive Model (p = 2)
-
dat_p2_exo
- Data from the Vector Autoregressive Model with Exogenous Variables
(p = 2)
-
dat_p2_exo_yx
- Data from the Vector Autoregressive Model (Y) and Lagged Predictors
and Exogenous Variables (X) (p = 2)
-
dat_p2_yx
- Data from the Vector Autoregressive Model (Y) and Lagged Predictors (X)
(p = 2)