Residual Bootstrap for the Vector Autoregressive Model Using Ordinary Least Squares
Source:R/RcppExports.R
RBootVAROLS.Rd
Residual Bootstrap for the Vector Autoregressive Model Using Ordinary Least Squares
Arguments
- data
Numeric matrix. The time series data with dimensions
t
byk
, wheret
is the number of observations andk
is the number of variables.- p
Integer. The order of the VAR model (number of lags).
- B
Integer. Number of bootstrap samples to generate.
Value
List with the following elements:
est: Numeric matrix. Original OLS estimate of the coefficient matrix.
boot: Numeric matrix. Matrix of vectorized bootstrap estimates of the coefficient matrix.
X: Numeric matrix. Original
X
Y: List of numeric matrices. Bootstrapped
Y
See also
Other Fitting Autoregressive Model Functions:
FitMLVARDynr()
,
FitMLVARMplus()
,
FitVARDynr()
,
FitVARLassoSearch()
,
FitVARLasso()
,
FitVARMplus()
,
FitVAROLS()
,
LambdaSeq()
,
ModelVARP1Dynr()
,
ModelVARP2Dynr()
,
OrigScale()
,
PBootVARExoLasso()
,
PBootVARExoOLS()
,
PBootVARLasso()
,
PBootVAROLS()
,
RBootVARExoLasso()
,
RBootVARExoOLS()
,
RBootVARLasso()
,
SearchVARLasso()
,
StdMat()
Examples
rb <- RBootVAROLS(data = dat_p2, p = 2, B = 5)
str(rb)
#> List of 4
#> $ est : num [1:3, 1:7] 0.79 1.0002 1.0667 0.3684 0.0133 ...
#> $ boot: num [1:5, 1:21] 1.017 0.733 0.991 0.909 0.583 ...
#> $ X : num [1:998, 1:7] 1 1 1 1 1 1 1 1 1 1 ...
#> $ Y :List of 5
#> ..$ : num [1:998, 1:3] 1.077 1.436 1.43 1.545 0.847 ...
#> ..$ : num [1:998, 1:3] 1.129 0.644 0.399 1.188 -0.688 ...
#> ..$ : num [1:998, 1:3] 0.873 1.291 1.201 0.713 1.825 ...
#> ..$ : num [1:998, 1:3] 2.9608 2.7655 -0.0879 1.5491 1.9377 ...
#> ..$ : num [1:998, 1:3] 0.0328 -0.5807 0.4307 3.439 2.4781 ...