Skip to contents

Function to generate the sequence of lambdas

Usage

LambdaSeq(YStd, XStd, n_lambdas)

Arguments

YStd

Numeric matrix. Matrix of standardized dependent variables (Y).

XStd

Numeric matrix. Matrix of standardized predictors (X). XStd should not include a vector of ones in column one.

n_lambdas

Integer. Number of lambdas to generate.

Value

Returns a vector of lambdas.

Author

Ivan Jacob Agaloos Pesigan

Examples

YStd <- StdMat(dat_p2_yx$Y)
XStd <- StdMat(dat_p2_yx$X[, -1]) # remove the constant column
LambdaSeq(YStd = YStd, XStd = XStd, n_lambdas = 100)
#>               [,1]
#>   [1,] 166.1666667
#>   [2,] 154.9675895
#>   [3,] 144.5232926
#>   [4,] 134.7829064
#>   [5,] 125.6989896
#>   [6,] 117.2272984
#>   [7,] 109.3265708
#>   [8,] 101.9583259
#>   [9,]  95.0866759
#>  [10,]  88.6781522
#>  [11,]  82.7015416
#>  [12,]  77.1277345
#>  [13,]  71.9295833
#>  [14,]  67.0817701
#>  [15,]  62.5606833
#>  [16,]  58.3443027
#>  [17,]  54.4120919
#>  [18,]  50.7448990
#>  [19,]  47.3248627
#>  [20,]  44.1353253
#>  [21,]  41.1607521
#>  [22,]  38.3866552
#>  [23,]  35.7995231
#>  [24,]  33.3867551
#>  [25,]  31.1365995
#>  [26,]  29.0380969
#>  [27,]  27.0810264
#>  [28,]  25.2558558
#>  [29,]  23.5536957
#>  [30,]  21.9662554
#>  [31,]  20.4858033
#>  [32,]  19.1051287
#>  [33,]  17.8175070
#>  [34,]  16.6166667
#>  [35,]  15.4967589
#>  [36,]  14.4523293
#>  [37,]  13.4782906
#>  [38,]  12.5698990
#>  [39,]  11.7227298
#>  [40,]  10.9326571
#>  [41,]  10.1958326
#>  [42,]   9.5086676
#>  [43,]   8.8678152
#>  [44,]   8.2701542
#>  [45,]   7.7127734
#>  [46,]   7.1929583
#>  [47,]   6.7081770
#>  [48,]   6.2560683
#>  [49,]   5.8344303
#>  [50,]   5.4412092
#>  [51,]   5.0744899
#>  [52,]   4.7324863
#>  [53,]   4.4135325
#>  [54,]   4.1160752
#>  [55,]   3.8386655
#>  [56,]   3.5799523
#>  [57,]   3.3386755
#>  [58,]   3.1136600
#>  [59,]   2.9038097
#>  [60,]   2.7081026
#>  [61,]   2.5255856
#>  [62,]   2.3553696
#>  [63,]   2.1966255
#>  [64,]   2.0485803
#>  [65,]   1.9105129
#>  [66,]   1.7817507
#>  [67,]   1.6616667
#>  [68,]   1.5496759
#>  [69,]   1.4452329
#>  [70,]   1.3478291
#>  [71,]   1.2569899
#>  [72,]   1.1722730
#>  [73,]   1.0932657
#>  [74,]   1.0195833
#>  [75,]   0.9508668
#>  [76,]   0.8867815
#>  [77,]   0.8270154
#>  [78,]   0.7712773
#>  [79,]   0.7192958
#>  [80,]   0.6708177
#>  [81,]   0.6256068
#>  [82,]   0.5834430
#>  [83,]   0.5441209
#>  [84,]   0.5074490
#>  [85,]   0.4732486
#>  [86,]   0.4413533
#>  [87,]   0.4116075
#>  [88,]   0.3838666
#>  [89,]   0.3579952
#>  [90,]   0.3338676
#>  [91,]   0.3113660
#>  [92,]   0.2903810
#>  [93,]   0.2708103
#>  [94,]   0.2525586
#>  [95,]   0.2355370
#>  [96,]   0.2196626
#>  [97,]   0.2048580
#>  [98,]   0.1910513
#>  [99,]   0.1781751
#> [100,]   0.1661667